Dispelling clichés at the nanoscale: the true effect of polymer electrolytes on the performance of dye-sensitized solar cells.
نویسندگان
چکیده
In the field of dye-sensitized solar cells, polymer electrolytes are among the most studied materials due to their ability to ensure both high efficiency and stability, the latter being a critical point of these devices. Hundreds of polymeric matrices have been proposed over the years, and their functionalization with several groups, the variation of their molecular weight and the tuning of the crosslinking degree have been investigated. However, the true effect that polymeric matrices have on the cell parameters has often been addressed superficially, and hundreds of papers justify the obtained results with a simple bibliographic reference to other systems (sometimes completely different). This work proposes a system of nanoscale growth and crosslinking of a polymer electrolyte inside a nanostructured photoanode. Electrochemical and photovoltaic parameters are carefully monitored as a function of thickness and degree of penetration of the electrolyte. The results derived from this study refute many clichés generally accepted and taken for granted in many literature articles, and – for the first time – a compromise between the amount of polymer, cell efficiency and stability is achieved.
منابع مشابه
Effect of Hydroquinone Dderivatives in Electrolytes on Dye-Sensitized Solar Cell Performance
New kinds of hydroquinone derivatives were synthesized and along with a azo dye applied as additives in the iodide/iodine redox electrolyte for dye-sensitized solar cells and their effect on the short-circuit photocurrent of dye sensitized solar cells was investigated. Addition of 0.05 M a hydroquinone derivative in the electrolyte comprising 0.5 M 1-methyl-3-propylimidazolium iodide (MPII) and...
متن کاملInvestigation the effect of substrate photo-electrode based on screen method on performance of dye-sensitized solar cells
In this paper we studied preparation of working films of dye-sensitized solar cells using screen printed method. The organic dye based on phenoltiazine with cyanoacrylic acid as the electron donor group utilized as photosensitizer. Fluorine-doped thin oxide FTO coated glass is transparent electrically conductive and ideal for use in dye-sensitized solar cells. FTO glass was coated by screen pri...
متن کاملNatural dyes extracted from black carrot and bramble for Dye-Sensitized Solar Cells
Two different natural dyes containing anthocyanin extracted from black carrot and bramble from Iran. Spectrophotometric evaluations of the natural dyes in solution and on a TiO2 substrate were carried out in order to assess changes in the status of the natural dyes. The results show that the natural dyes indicate buthochromic shift on the TiO2 substrates. The chemical adsorption of natural dyes...
متن کاملInfluence of nanostructured TiO2 film thickness on photoelectrode structure and performance of flexible Dye- Sensitized Solar Cells
A commercial Ti-Nanoxide was deposited on In-doped SnO2 (ITO) polymer substrates by tape casting technique with different thicknesses (7, 14 and 36μm) to be used as photoelectrode in flexible dye-sensitized solar cells (DSSCs). Ruthenium dye was adsorbed on each TiO2 film for 24 h. The resulting photoelectrodes were used to form flexible DSSCs in combination with...
متن کاملInvestigation of Organic Compounds as Photosensitizer for Dye Sensitized Solar Cells
Two organic compounds (SC-23=(E)-2-Cyano-3-(2,3-dimethoxyphenyl) acrylic acid and SC-25=(E)-2-Cyano-3-(2,5-dimethoxyphenyl) acrylic acid) involving methoxy groups as the electron donor and cyanoacrylic acid group as the electron acceptor have been investigated for dye sensitized solar cells. They shows a short-circuit current density (Jsc) of 2.08 and 1.81 mA cm-2, an open circuit voltage (Voc)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 7 28 شماره
صفحات -
تاریخ انتشار 2015